Inflammation Cytokines
in JAK2V617F-mutated MPNs

Sylvie HERMOUET

Inserm U1232, Nantes, France

Team 16: "Molecular Mechanisms of Chronic Inflammation in Hematological Diseases"
Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA)
Institut de Recherche en Santé 2, Université de Nantes, CHU de Nantes, Nantes, France
Before 2005

- **Hypersensitivity to cytokines** of MPN progenitors, used for diagnostic purposes:
 - Endogenous Erythroid Colony (EEC) growth
 - Low serum Epo

- **Chronic inflammation**: Elevated levels of certain cytokines (VEGF, b-FGF, IL-6…), known to be produced by MPN precursor cells (megakaryocytes) or/and cells of the bone marrow micro-environment
 - Progenitor cell survival & growth
 - Fibrosis of the bone marrow
 - Neo-angiogenesis
2005: Mutation JAK2V617F

Mutation 1849G>T (exon 14) in the gene JAK2, specific for MPNs

<table>
<thead>
<tr>
<th>JH7</th>
<th>JH6</th>
<th>JH5</th>
<th>JH4</th>
<th>JH3</th>
<th>JH2</th>
<th>JH1</th>
</tr>
</thead>
</table>
| FERM domain
 4.1
 Ezrin
 Radixin
 Meosin | V617F
 pseudo-kinase domain | kinase domain |

Increased activation of the JAK2 / STAT5 pathway → Hypersensitivity to EPO
2013: Calreticulin (CALR) Mutations

Frameshift mutations caused by deletions or insertions in Exon 9:
Type 1: 52-bp deletion (p.L367fs*46)
Type 2: 5-bp TTGTC insertion (p.K385fs*47)

Mutant CALR requires both its mutant C-terminus and the TPO receptor (MPL) for transformation

*Elf S et al. Cancer Discov 2016;6:368-81
Araki M. Blood 2016;127:1307-16*
JAK2V617F, MPLW515L/K or CALR exon 9 mutations enhance myelopoiesis via increased activation of JAK2/STAT5 pathways

+ Disruption of the STAT3 and STAT1 pathways

MPNs: More than JAK2, CALR, MPL mutation?

- JAK2V617F is found in all subtypes of MPNs
- JAK2V617F+/+ clones are found in PV and PMF
- MPLW515L/K and CALR mutations are found in ET and in PMF
- Phenotype and evolution and JAK2, MPL or CALR mutant burden are not correlated

Unanswered questions:
- Why do JAK2V617F+ patients present with ET, rather than PV, or PMF?
- Why do CALR+ patients present with ET, or PMF?

Other pathogenic mechanisms likely at play in MPNs, presumably early and pre-disposing to JAK2, CALR, MPL mutation

Boissinot et al. Blood 2006
Non-driver mutations

IDH1, IDH2, EZH2, SRSF2 (poor prognosis)
ASXL1, TET2, DNMT3A, CBL, RUNX1, SF3B1, TP53

- Mutations in epigenetic regulators *TET2* and *DNMT3A* are involved in disease initiation and may precede the acquisition of *JAK2V617F*.

- Other mutations in epigenetic regulators such as *EZH2* and *ASXL1* also play a role in disease initiation and disease progression.

Vainchenker W, Kralovics R. Blood 2017; 129:667-679
Pre-disposition to JAK2, MPL or CALR mutation and MPN

Unknown event leading to chronic stimulation of myelopoiesis: may be genetic, germline or somatic, other
The haplotype 46/1 of chr. 9p is associated with a pre-disposition to mutations in the JAK2 gene on the same allele.

Olcaydu et al.; Jones et al.; Kilpivaara et al. Nature Genetics, 2009, March 15th

JAK2V617F can occur multiple times in the same patient (PV and ET)

JAK2V617F can occur as a consequence of a pre-disposition
Significant increase in frequency of the TNF238 GA genotype in MPNs compared to controls (OR=2.21, 95% CI=1.02-4.80, P<0.04)

Distribution of the genotypes and allelic frequencies of TNF-308 significantly different among the MPNs, JAK2V617F positive, PV and PMF, and controls

Table 1

<table>
<thead>
<tr>
<th>Genotype/allele</th>
<th>TNF-238</th>
<th>MPN overall N = 123</th>
<th>MPN JAK V617F positive N = 94</th>
<th>MPN JAK V617F negative N = 29</th>
<th>PV N = 33</th>
<th>ET N = 35</th>
<th>PMF N = 22</th>
<th>MPNa N = 33</th>
<th>Controls N = 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>101 (82%)</td>
<td>78 (82.9%)</td>
<td>27 (81.8%)</td>
<td>18 (81.8%)</td>
<td>27 (81.8%)</td>
<td>110 (89.4%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>22 (17.8%)</td>
<td>16 (17.1%)</td>
<td>6 (18.2%)</td>
<td>6 (17.1%)</td>
<td>6 (18.2%)</td>
<td>11 (9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (1.6%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>67 (54.5%)</td>
<td>48 (51.1%)</td>
<td>16 (48.5%)</td>
<td>20 (57.1%)</td>
<td>9 (40.9%)</td>
<td>85 (69.1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>53 (43%)</td>
<td>44 (46.8%)</td>
<td>17 (51.5%)</td>
<td>13 (37.2%)</td>
<td>13 (59.1%)</td>
<td>36 (29.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>3 (2.5%)</td>
<td>2 (2.1%)</td>
<td>0</td>
<td>2 (5.7%)</td>
<td>1 (3.0%)</td>
<td>2 (1.6%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>187 (76%)</td>
<td>140 (74.5%)</td>
<td>49 (74.2%)</td>
<td>53 (75.7%)</td>
<td>54 (81.8%)</td>
<td>206 (83.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>59 (24%)</td>
<td>48 (25.5%)</td>
<td>17 (25.8%)</td>
<td>17 (24.3%)</td>
<td>13 (29.5%)</td>
<td>40 (16.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pathological process consisting of:

- **Cellular infiltration**
 granulocytes, monocytes, lymphocytes

- **Release of mediators**
 in blood vessels and tissues

Causes of inflammation can be physical, chemical, or biologic: infection, hypoxia, cancer.
Inflammation and Pathogenesis of MPNs?

Mediators of Inflammation in Myeloproliferative Neoplasms: State of the Art

Guest Editors: Sylvie Hermouet, Hans C. Hasselbalch, and Vladan P. Čokić

- MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives, Hans Carl Hasselbalch and Mads Emil Bjørn
 Volume 2015 (2015), Article ID 102476, 16 pages

- HSP90 and HSP70: Implication in Inflammation Processes and Therapeutic Approaches for Myeloproliferative Neoplasms, Margaux Sevin, François Giridon, Carmen Garrido, and Aurélie de Thonel
 Volume 2015 (2015), Article ID 970242, 8 pages

- The Hen or the Egg: Inflammatory Aspects of Murine MPN Models, Jonas S. Jutzi and Heike L. Pahl
 Volume 2015 (2015), Article ID 101987, 8 pages

- Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms, Gregor Hoermann, Georg Greiner, and Peter Valent
 Volume 2015 (2015), Article ID 869242, 17 pages

- The Role of Reactive Oxygen Species in Myelofibrosis and Related Neoplasms, Mads Emil Bjørn and Hans Carl Hasselbalch
 Volume 2015 (2015), Article ID 648090, 11 pages

- Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation, Sylvie Hermouet, Edith Bigot-Corbel, and Betty Gardie
 Volume 2015 (2015), Article ID 145293, 16 pages

- Impact of Inflammation on Myeloproliferative Neoplasm Symptom Development, Holly L. Geyer, Amylou C. Dueck, Robyn M. Scherber, and Ruben A. Mesa
 Volume 2015 (2015), Article ID 284706, 9 pages

- Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm, Angela G. Fleischman
 Volume 2015 (2015), Article ID 606819, 6 pages

- Circulating Cytokine Levels as Markers of Inflammation in Philadelphia Negative Myeloproliferative Neoplasms: Diagnostic and Prognostic Interest, Julie Mondet, Kais Hussein, and Pascal Mossuz
 Volume 2015 (2015), Article ID 670580, 10 pages

Special Issue "Mediators of Inflammation in Myeloproliferative Neoplasms: State of the Art" November 2015

More information on: http://www.hindawi.com/journals/mi/si/329170/
Inflammation present in almost all MPNs

Mondet J, Hussein K, Mossuz P. Circulating cytokine levels as markers of inflammation in Phinegative MPNs: Diagnostic and prognostic interest. Mediators of Inflammation Nov 13, 2015, Article 670580
Correlations between Cytokine Levels and Biological & Clinical Symptoms

PV
- Thrombosis: IL-12(p70), GM-CSF, C-Reactive Protein (CRP), Pentraxin 3
- Leukocytes: HGF
- Hematocrit: IL-11

PMF
- Quality of Sleep and Appetite: RANTES, ILR1-α
- Pruritis: Ferritin
- Weight Loss: Leptin
- Splenomegaly: HGF
- Leukocytosis: IL-8
- **Shorter Survival**: MIP-1, CRP
- **Poor Prognosis (inferior survival)**: IL-8, IL-12, IL-15, IL-2R

=> Prognostic biomarkers

Tefferi A et al. J. Clin Oncol. 2011;29:1356
Molecular Pathways of Inflammation & Cytokine Production

- JAK2/STAT5?
- NF-κB
- JAK1/STAT1/STAT3
- HIF-1α
Quantification of 40 inflammation cytokines + 2 receptors in serum from 72 MPN patients at the time of diagnosis (51 with JAK2V617F mutation, 21 with CALR or MPL mutation)

Methods: Multiplex Luminex technology, BioRad kits

All 72 MPN patients over-produce >15 inflammation cytokines

- **13 cytokines are over-expressed by all patients**
 - Anti-inflammatory: IL-4, IL-10
 - Pro-inflammatory: TNF-α, IL-1β, IL-12p70, IL-8, IL-17
 - G-CSF, Eotaxin, MIP-1α, MIP-1β
 - RANTES, SDF-1α

- **2 are over-expressed by ~50% patients: LIF and MIG**

- **1 receptor and 4 cytokines are occasionally elevated:** GM-CSF, IL-33, MCP-1, IL-2Rα, IL-15
 (poor prognosis markers in PMF)
Cytokines in excess for all MPN patients

- IL-1β
- IL-12p70
- SDF-1
- LIF
- IL-33
- GM-CSF

ET
- Essential thrombocythemia
- Polycythemia vera
- Primary myelofibrosis

PV

PMF

- Always
- 50%
- Rarely
51 JAK2V617F+ Patients

28 PV, 18 ET, 7 PMF

%JAK2V617F: 5% -> 96%

% JAK2 V617F
n=51

PV n=26
ET n=18
PMF n=7
Cytokine levels and %JAK2V617F NOT, or weakly, correlated

51 JAK2V617F+ patients (all phenotypes)
No correlation between %JAK2V617F and 39/40 inflammation cytokines
Multiparametric studies: on-going

Weak positive correlations between %JAK2V617F and IL-1Rα and IP-10
Spearman correlation test

IL-1Rα
p = 8.317e-005
r = 0.5227

IP-10
p = 0.002034
r = 0.4261
26 JAK2V617F+ PV patients: No correlation between %JAK2V617F and 37/40 cytokines

Weak correlations between %JAK2V617F and IL-1Rα and IL-1β

Good inverse correlation between %JAK2V617F and leptin (negative feed-back)
18 JAK2V617F+ ET patients

No correlation between %JAK2V617F and 40/40 inflammation cytokines
26 JAK2V617F+ PV patients vs 18 JAK2V617F+ ET patients
18 JAK2V617F+ ET patients vs 15 CALR+ ET patients

- **JAK2** V617F+ ET patients vs CALR+ ET patients
- CALR mutation + TET2 mutation

CHARTS

- **TNF-a**
 - p* = 0.022

- **IFN-g**
 - p* = 0.0143

- **IFN-a2**
 - p* = 0.0232

Note: The charts show the levels of TNF-a, IFN-g, and IFN-a2 for JAK2V617F+ ET patients and CALR+ ET patients, with statistical significance indicated by p* values.
JAK2V617F+ ET vs CALR+ ET

18 *JAK2V617F*+ ET patients vs 15 *CALR*+ ET patients

- **Green Circles**: *CALR* mutation + *TET2* mutation

Acute inflammation

- **TNF-a**
 - *p* = 0.022

- **IFN-g**
 - *p* = 0.0143

Immuno-stimulant

- **IFN-a2**
 - *p* = 0.0232
JAK2V617F+ ET vs CALR+ ET

18 JAK2V617F+ ET patients vs 15 CALR+ ET patients

- **CALR mutation + TET2 mutation**

Acute inflammation
- Inhibits viral replication

Immuno-stimulant
- Anti-viral, anti-microbial
CALR+ ET vs JAK2V617F+ ET

18 JAK2V617F+ ET

15 CALR+ ET

IL-4

\[p^{**}=0.0010 \]

IL-9

\[p^* = 0.0147 \]
CALR+ ET vs JAK2V617F+ ET

18 JAK2V617F+ ET
15 CALR+ ET

CALR mutation
+ TET2 mutation

IL-4

\[p^{***} = 0.0010 \]

IL-9

\[p^* = 0.0147 \]

Increases IL-4 production
• Inflammation is important in MPNs

• Determination of a patient’s inflammation status is simple (multiplex cytokine assay)

• There are predictive inflammation markers in PMF: IL-2R, IL-8, IL-12, IL-15, MIP-1

• Inflammation is specific: Cytokine profiles differ in MPNs and in MGUS/MM (similar in MGUS and MM)

• IL-1Rα and IL-1β levels and %JAK2V617F are -weakly- correlated in JAK2V617F-mutated PV

• IL-1Rα is the main difference between JAK2V617F+ PV and JAK2V617F+ ET

• Inflammation differs in JAK2V617F+ ET and in CALR-mutated ET
Acknowledgements

Team 16, Inserm U1232, Nantes
"Molecular Mechanisms of Chronic Inflammation in Hematological Diseases"

Past collaborators
Isabelle CORRE
Marjorie BOISSINOT
Cédric CLEYRAT
Mathias VILAINE
Kévin ORY

Present collaborators
Edith BIGOT-CORBEL
Adrien BOSSEBOEUF
Sophie ALLAIN-MAILLET
Nicolas MENNESSON
Mégane BOSTOEN
Jean HARHB

Collaborations (France)
Yannick JACQUES (Nantes)
François GIRODON (Dijon)
Eric LIPPERT (Brest)
Olivier MANSIER (Bordeaux)
Serge CARILLO (Nîmes)
Eric PIVER & Anne TALLET (Tours)